Shapes & Designs 3.1

No new vocabulary terms.

Shapes & Designs 3.2

No new vocabulary terms.

Shapes & Designs 3.3

No new vocabulary terms.

parallel lines

Lines in a plane that never meet. The opposite sides of a regular hexagon are parallel. Polygons A and B each have one pair of opposite sides parallel.

Polygons C, D, and E each have two pairs of opposite sides parallel.

rectangle

A parallelogram with all right angles. Squares are a special type of rectangle. Rectangles

transversal

A line that intersects two or more lines. Lines *s* and *t* are transversals.

vertical angles

Vertical angles are a pair of congruent nonadjacent angles formed by the intersection of two lines. In the figure below, angles a and c are vertical angles, and angles b and d are vertical angles.

reflectional symmetry

A figure or design has reflectional symmetry if you can draw a line that divides the figure into halves that are mirror images. The line that divides the figure into halves is called the *line of symmetry*. The design below has reflectional symmetry about a vertical line through its center. Reflectional symmetry is sometimes referred to as *mirror symmetry* or *line symmetry*.

rotational symmetry

A figure or design has rotational symmetry if it can be rotated less than a full turn about a point to a position in which it looks the same as the original. The design below has rotational symmetry with its center as the center of rotation and a 60° angle of rotation. This means that it can be rotated 60° , or any multiple of 60° , about its center point to produce an image that matches exactly with the original.

